TOP SEGRET

NOIE TO DF-120 MREPORT ON THE SOLUTION OP MESSAGES IE DEPTH OF THE AMERICAE CIPHER DEVICE M-209"。

Attention is celled to the apparent discrepaney between the figure 33 appearing in figure $10\left(x \quad \frac{100}{33}=55,400\right.$ etc) and the statement in the sixth line fror the bottom of page 13. The division in the text calls for doubling the number of positions. This step in chart 10 is two operations, 33 being the actual muber of positions. From the textual account it is obvious that " 33^{n} is the number to be doubled. E.C.

12 July 1948
25 copies: Copy No, 2 1 page.

Distribution:

1	AS-10, AS-23, AS-14 file
2	AS $=70, \mathrm{AS}-76-\mathrm{C}$ file
3	AS-80, AS-83 inle
4	AS-90, AS-95 file
5	A.S $=96$
60.7	CSAV
8.9	LSTC
10	CSCID
11	CBO
12	ASA/Europe
13	ASA/Pacitile
1.4	ASA/School, Qfficer's Training Division
25	AS-93
26	AS -94.
17-18	ASe80
19-20	AS-70
21.25	file

Declassiried by D. Janosek,

Deputy Associate Director for Policy and Reed
on $10 / 26 / 2010$ and by Policy and Reco

TOPSEGRET

TOP SECRET

DE 0120
58/ $48 / \mathrm{TOPSEC} / 4 S O 14 \sim$ TKCOM
TICOMDOC. 2794

REPORT ON THE SOLUTION OF MESSAGES IN DEPTH OF THE
AMERICAN CIPHER DEVICE $\mathrm{g}-209$

1. The attached is an Army Security Agency translation of TrCOM Dockwent 2794, German title: "Bexicht Buber die Losung phasengleicher Sprtche der amerikanischen Schlesselmaschine 1 -209."
2. This is one of the reports of the Signal Intelligence Agency of the High Command of the German Army ($0 \mathrm{KH} / \mathrm{GdNA} / \mathrm{In} 7 / \mathrm{VI}$) , As a result of informal tion received by Jos. Military Intelligence Service, Austria, they were found buried in a comp at Glsmezbach, Austria, and were forwarded through ASA/ Europe to TLCOM at LSTO in May 194%
3. Considerable liberty has been taken in this translation (as was done in TICOM Doc, 2795, "Determination of the Absolute Setting of the Ah -1 (12-207) by Using THo Messages with Different Indicators") in order to have the text conform to standard Army Security Agency usage. While the techniques degscribed here are quite similar to those employed in related Hagelln type problems the presentation has been found to be clear and self explanatory. One of the statistical methods is interesting because of its probable apples cation in other problems.

CSGAS-14-TTCORA
23 June 1948
Translated: $\mathbb{E C}$
Distribution:-

No. of pages: 27
25 copies Copy iTo.
2.

TOPSECRET

A. Introchetion: General Remarks

Foday I have the Eask of giving gou a short survey of the work which is being accomplishod in Section 2a on the Anerican Cipher Bachine jote9. The work in cur section is restricted exclusively to the purely linguistice solution of such machire messages, while the reconstruction (posibile on the basis of such lingristic solution) of the intemal setting of the mschine, Which is weila for the day, is taken up in Scction $2 \mathrm{~b}_{\mathrm{o}}$ I should Itre Por that reason here to restrict myanly to the puraly 3 ingutstic aspects and therefore to mention to you only so much of the basse construction arde wothon of oporation of the machine as is absolutoly mecessary for you to Sollom my prasentatrore.

First of all a fer mords about the machine 16selfo it is, essantially, a rachine of the Figelin type, which is kncm by the Americans under the thtie Non09, but is know by us either as AMol or BCo38. Tt wes produeed in Sweden. The machine balongs to the same type as the already wellaknown BC36, end follows the sane cryptographie prinesple. I will not explain here 1mactail the basis of this princlple; lot me just remarls (bocause this is important for 1 inguistio aolution that $\hat{\text { it }}$ is a matter of encimerment by世eans of polyaiphabotic substitution, $\mathrm{k}_{\mathrm{o}} e_{0}$, each lettor of a message is enc oiphered with a aleferemt substitutlong The machine is so bullt that a repetition of the same substitution sequence sppears only aiter 101,405 , 850 substitutions. This numer cormesponde to the product of the lengthas of the 6 keywhels in the mehine, whose leagths are $26,25,23,21,19$, and 17 letters, and are prime to aach obhes. on the 26 wheel all the latters of the alphabet ars represented; on the 25 जheel mm is missing on the 23 theel

TOPSECRET

NT, Y, Z^{n} are missing; on the 21 wheel ${ }^{n V}, N, X, Y, Z^{\prime \prime}$ are missing; on the 19 wheel "T, $V, V, W, X, Y, 2^{n}$ are missing; and on the 17 wheel all the letters fron " setting a solution of messages onciphered in this way would seem to be rether hopeless. One circumstance, however, gives us in certain cases the possibility of breaking in. The aubstitutions, which are effective at each individual position of the message, are alphabetical and reciprocel. That means that at each position in the message only one definite substitution out of a choice of 26 different ones is possible. These 26 aifierent substitutions come about because a normal alphabot and a reverse standard alo phabet have been slid against each other. (Compare the slidervieg) At any rate, we do not inow which of these 26 dfferent possible substitutions will be effective at any given position. Honever, when messages appear which were encipherod with the same internal and externsl setting of the machine-and this is apperent from the similarity of the indicator groups on the same dayma linguistic solution is possible. That is to sey, if one superimposes two such messages, and if one knoms at any given position the arrangement of the clear text letters in one of the two messeges, one can datermine, vith the help of our slide, the clear text letters for the other message at this position. How one utilizes this fact in solution I whal show more ciearly in the course of my remarks.

First, hovever, permit me a few more general remaris, The first use of the machine by the Arexicans occurred in December 1942 in the African theater of war. The messages are recognizable through two 5-letter indicator groups at the beginning of the message of the type AABCD EFGXY, which are repeated at the end of the message, mostly in the same order, but also sometimes re. versed. At another place I will go into more detail concerning the meaning

TOP SECRET

TOPSECRET

of the indleatorso the first messages in depth, that is, messages with like Indicator groups, appessed in January 1943. Since $i t$ was a matter of exceptionally long messages of 682 letters, the entry into the entire system succeeded with thom The two messages wese lingutsid.cally solved and the Pixst internal machine setting found analyticalyg.

Ther in April and uy 1943, the then widely usod strip system, known as M-94 or JRSAL strip, was supplantod by this machine, we could read this new Axaffic currently as long as messages in depth appeared. thus, messages ware solved from the theator of wer in Africa, later in Sicily, and Italy, and also from the Angio-Americen invaston army which wes waiting in Engo land. Hexe it was mainly a giuestion of practice messages, which, nevertheloss, were read currently and which gave valuable hints to Evaluation,* so that, by the beginning of the invasion, a rather clear picture of the etrength and composition of the invasion army had been buile up. Since the beginning of the invasion messages manly from the festom front and Irom Itely are being worked ono

The intarnal setting of the machine is valid for a definite key area and is changed doily. Recording to regalations, the indicator group and, With it, the extornal. setting of the 6 koy wheals, is supposed to be changed. from message to message, but fortunately this is not always done, for, otherwise, no messages in depth would eppear at ail.

The machine is used principally for the encipherment of tactical giensages fron division dom to, and including, bettalions. Somatimes, however, even the corps use it.
*
(It should be noted that in Geman Signal Intelligence practice zwalus tion is distinct fros Traffic Analysis and corresponds closely to the Bxitish BPusion".)

TOPSECRET

B. Solution of Messages in Derth.

1. Strip lathod.

Folloming this introductory survey I should life to proceed to a discussion of the methods of the ectual linguistic solution. If you will please recall. what I said at the outset: viz., if I krow the cloar text at any position in one of twe messages in depth, then, with the help of our slide, the clear text at the same position of the second message is very easy to ree construct.

Here I shoul like to explain in passing just hov we came by this slide. (See Pigure 1.) The illustration shows the type of theel of the machine with the 解o reciprocal alphabets. In enciphering, the clear text letters are put In on the left hand alphabet, the machine is operated and the right hand alphabet writes the cipher letters corresponding to the internal setting of the machine at the time. Our slides, then, are nothing more nor less than these two circuler alphabets unrolled and set next to each other as strips which can be slid against each other. Thus, if we know the relationship of clearQipher at one position, the slide inmediately furnishes us with the entire substitution alphabet which is effective at this position. This fact can be exploited in the following namner: 2 word suspected to appear in one message -afor example, a numberwacan be set down at all positions of the message and, at each position, corresponding clear text in the other message can be sought: If the suspected word is actually at any position in the message, then, at the same position in the second rossage, a Pragment of clear text must appear. This method, however, is very bothersome and time wastiago Therefore, we have attempted the simplification which follows. (See 81.guxe 2.)

Let us ossuma that at all the positions of the first message the clear

$$
\text { TOP } \stackrel{-4}{S} E C R E T
$$

TOPSECRET

text lotter "Z" appears and see which clear text lotters corrospond to it in the second massage. We do the same for "hn, "B", and "C" and so Sortho These corsesponding letters we write under each other in colunan, above which, as a haading, we write the letters of the alphabet with which we had begun. As you will see, by no merns does this have to be done for ell the letters of the alphabet, but, whenover ono has a complete colum, ono cen obtain the other letters by alphabetical progiession. The conplêed strips are then cut ayert and used in testing for probable words in oae message. (For example, the word THREK, The Zostrip is made $3 n$ duplicate aince " 2^{n} can be tried ns si separation letter before and after the suspected word. In oxder that the clear text expected in the second message will appear in a line the trial nust be built up stepwise. (Compare ifgure 3.) If you find clear text, or fragments of clear text, in the second measase, you count the lines from the top down, and obtain thareby the exact position in the message where the terts occur. Hon, With the help of our slide, yon can try, alternately above and below, to build up fuxther text. If the trial hits and in not a coino cidence, then, in builaing up further alternately above and below, clear text will have to appearo

We have obtained the following by this method: by one trial of a word we esin see at a glance whethsr thin word actually occurs at any position of the message.

Further, it has been shown to be very practical to use the seme strips in reverse procedure, that is, to try in the second message all the letters of the elphabet and after the othas and to write dom the corresponding letters of the upper message in colums, one under the othor. Then all we have to do is to tum the stripe around and we can try the sems probable worls in the other message. .50

TOPSECRET

Strip writing by hand, aspecially for Zong messages, is a very tedious and time-westing job, so wa look for a method of doing it mechanicaliy. A very practical solution is the strip writer (invonted by ofu PoKORN: which is based on the following principles:

In a cass of messages in depth, the interval between the two cipher letters is the game as the interval between the upperlying clear text letters, only with reversed sign (algebraic). (See figure to) is o D has the interval 9 。 If wo put a "Z" agatnst a "Un we must put a "Q" against the "nn。 Z o Q has the interval "minus 9^{n}. So now we have only to vrite two similas alphabets (this time not reciprocal!) under each other so that the letters which have an interval of 9 are above each other, being sure that the cipher relatione ship U - D corresponds to the clear text relationship $Z \sim Q$, only again in the reverse direction. We exploit this fect. We devise two slides upon which the alphabets are witten in the same direction. The outer slide is fixed in such a way that the letter "Zn is at the bottons. Now you must turn the innex slicie so that the cipher letter of the inirst massage is set alove the cipher letter of the second message, that is, above "D". Opposite the "Z" of the outer slice, then, almaym appaars the clear letter which would corre. spond to a "Z" at this position of the first mescage. Thus we have, in order, the letters of our "h" stripo With the inner slide, fastemed tight, there is a type wheel which carries type slugs corresponding axactly to the inner slide, end one only has to dram type wheel scrass towards the right in order to obtain the alphebet beginning with the clear text letters of the *
(M.C.O., or Gucerofificex, Alfred POKORN was a cryptanalyst attached to the American Ingelin Section of in 7/VI of OKY. Sse TICOM I-175.)

TOPSEGRET

TOPSECRET

"Z" column. Thus, to a certain extent, the apparatus combines into one process the actual writing of the alphabets and the seeking of the initial letter of each line appearing in the "Z" column. (See figure 5 and 6) 。

2. Bipraphic Frequencies.

Now back ta the tert. It often occurs that the alternating construction of clear taxt camot be continued as far as desired, but that a place is weachor where, both above and below, a word ends and so a "Zn appoars in both messages. One can thea guess what fallons and try to build up further text as before. II that does not succeed, one can renem the trial of probable words without stripg anc, in this way, try to obtain a new breals-in at another point. If that is not suocessful either, there is still a thire method of making progress, that is, the sowealled Bigraph Frequency. (See Pigure 7.) The name itself reveals its nature. it the point following the "g" in both Hessages a new word has to begin. So we seak out in the next two positions all the bigraphs which could yield, in both messages at the same tine, possible Snglish words or good abbreviations. For this purpose we derise speciel strips. Firgt of all we try, at the first position in one of the tro messages, all of the lettern of the alphabet, and we write this alphabet on a strip, and under each letter we write, fn RED and displaced a lithte to the right, its corre aponding letter from the second message. Do the same thing for each succoeding position. Then we begin to move tho second strip peat the first one, seeking out, in one line, all the positions which give possible English clesr text bigraphs for both the red and black Iatters. Alongside these we thon build up, with the next strip, a third letter, then the Eourth, and so on. In this way we must at last, cone upon the correct continuation if there is no gerble o-in which case one would not be able to find the correct bigraph. If $-7=$

TOPSECRET

ore bas found the continuation, the further brilding up proceeds as desaribed above.

3. Text offset by One P2ace.

With certain provisions there is still another possibility of attaining very quickly a solution of messages in depth, and that is when messages sppear which completely agree in the firgt ciphor groupso in such a case the eame text must have ariginally been in both messages. At some postiton, then, this agreenent of the cipher tort ceases. If it 3 n mot a case of a cipher mistake (garble) or omission of latters or groups in the oiphor tert, then at this position the clear text of the two nessages must become sivergent. It. ney be that the continuing text, following a stereotyped beginimg, is completoly different th the two messages. Ghen oux stirip method must be used. for solutiono orten, however, farther on in both massages there is similar text, except that, at the brealingooff point, in one of the two messages, a letter was onitted or mistaikenly added, so that now the clear texto in the two messages appears offoset by one. If such is the case, there is a very sinple methot of roconstructing this offeset clear text. (See figure 3o)
let us assume that at the first position atter the parallel there was an " ${ }^{2}$ in the upper message, then this would correspond to "pn in the 1 ower message. Wor, if the upper message, with respect to the lower ons, is offo set one place to the right, the "pn wovid heve to appear agein in the upper megsage in the next position, and the "Mn, which corresponded to it in the lower message, must appear at the third posftion above, etc. Bowever, since any letter of the alphabet could have stood in the first position above in steed of the arbitarily assuned "An, wo must carry through the same msthou Sor all the letters of the alphabeto Since for nB", "Cn, otce, one always - 8

TOPSEGRET

TOPSECRET

gets the letters which follog it in the alphabet, one has only to write the rest of the alphabets, column-wise dorn, and clear text must be found in one of the 26 rows. In our exampie, either in the upper message a double "Z" has been sent, or in the lower message the separation " z^{n} was forgotten. According to experience the sending of a double " 2 " occurs most often. So, in the trial of an offaset by one, one will almays begin by trying a "Z" at tho first position after such parallels in the upper or lower message, then one gets the correct clear text immediately and saves oneself the trouble of writing dom the alphabets. For the other case, we have set up a table on which the alphabets have already been writion dow so that we heve only to bring them into the correct posittion in order to seels out the clear teat from one of the 26 rows. The question arises how is a garble (transmission garble) made noticeable in this mothod? iaturally, in the line of clear text which me have found, the text stops at this position, but it just juxps over to another line. Not only that, but the interval or jump, from the originel line is just as much as the garbled cipher letter is dipferent from the correct one. Io our example we assumed the garble "Q" instead of non and we see that the clear text jumps up exactly two lines further on

4o opfset by Two.

A quite similar system can be employed in the ease of a suspacted offset of two in two similar texts. It can easily occur that, through a second error Which works in the same direction as the Iirst, a mossage is offset by one letter further. (See ifgure 90) In this coanection one must consider the folloning: the letter of the 1 ower message which corresponds to the clear text letter tried in the first position of the upper message does not appear agein until the third position in the upper messages the letter corresponding to this one occurs at the firth position, etc. 留th that method we obtain, -9∞
TOP SEGRET

TOPSECRET

by alphabetical continuation, a kind of a grid. Furthermore, wh th anfset of two, the seconi, Pourth, sixth, etc., letters atandidependent on each other, so one can use this method for them also, thereby obtaining a second square Which can be interlocked, stop by step, into the first one Aiter every step one must test the 26 Innes which core out against the clear text, therefore 26×26 lines in all. In one of these 676 rows we must find the desired clear text. Naturally this system can be extended at will for orfsets of 3, 4,50 etco, but that becomes too complex and timeawasting, so one works more quickly and sureiy with out strip method.

Furthermare, with an of iset of one or two only a short fragment of clear tert needs to be tested in this manner, since, with only the help of our slide, one can build further mithout any trouble up to the point where efther a garble or a new offset appeara.
5. Depth: Then the Double Lotter in the Indicator Group is Difierent,

How there is one other case to be discussed, one in which the messages in depth are not obtained until later, that is, when two meseages are available in which the indicators agree except for the doubled letter. In ordex to nake the following understandable to you, I must insert a fev short words concerno fing the meaning of indicator groups and the enciphexing technfaue of the Americans.

The ten latters of the indicator groups have the following meaning. The last two letters (XI) denote the cipher arsa or cryptosystem net in which the key in question is effective. The six letters from the third to the eighth position (the third group) indicate the basie setting of the six key wheels. They are to be chosen axbitarily by the radio man, but of course they must be within the scope of the wheel.s. The double letter in the firgt two positions (of the first group) serves to encipher this basic position -100

TOP SEGRET

TOPSECRET

and is also to be chosen arbitarily by the radio man. This double letter is enciphered 12 times with the basic setting and the first six usable letters which come out of this encipherment then give the real starting position of the six key wheels. Oniy with this setting can the message be deciphered.

Example. In enciphering the double letter "A" twelve times, the letters R B ZDXHMFQ TASmight appear. The initial setting of the machine for the message to be deciphered vould then be R B DHRF, since the letter "Z" does not appear on the 23 wheel, and the letter "X" does not appear on the 2l wheel, and thereiore these nust be strickened out ${ }_{9}$

Now if we have two messages in which the indicator groups agree except for the doubled lettereofor example in one of them the double letter is A anc. in the other one it is B-othen under cextain circumstances we can, by sliding the messages against each other, obtain the genuine messages in depth. That is to say, if the encipherment with the double letter "A" gave the letters as above, then the encipherment of the double letter " ${ }^{\text {n }}$ will give the letters which proceed thean in the alphabet, or thereiore, QA YCW GLEPS Z R The initial settings of the two messages are therefore R B D K M F and Q A C G L E. Now, if you set the machine at the initial setting of the second. message and encipher a letter, each one of the six key wheels will move forward one step, that is, one letter farther along in the alphabet. So, thereby, the exact initial setting of the first message is arrived at and the two messages are in depth from this point on. Thus, in this case, we obtain messages in depth if we omit the ifrst position of the massage with the double letter "B". In the case of an offset from A to C_{9} we would have to omit two letters, and in the case of an offset from A to D, three letters, etco

Sotewer, one point must be considered in this connection. The depth in the messages could appear because one letter had to be struck out (or the
TOPSECRET

TOPSECRET

enciphorment of the doubled letters) of our two encipherments at the same positions. If this is not the case, than we do not gat any messages in depeb.

Example. Let us assume that in the encipherment of to double letter "A" we would obtain the iollowing series of lettars: IN BWDXHTTQTAS. Then the exciphermant with B would be \& A VC GSEPS
 thrown out), and QAVCGT (V and S had to be thrown out) It will be geau that thase two initial setings now have very littie in common, namely, only the ifirst two positions. In this case, naturajly, no depth can be found by Isliding the two messages against each other. It is 211 uminating that the probabilsty of elimination of latters, which has to be done at the same position, becomes smelier and anslles the greater the distance the two coubled Ietters are separatsd from each other.
C. Criteria for Dopth.

1. Trigraph Difforences (Sea figure 10)

That has just been discussed covers the most important methods for recovering plain text from messages in depth。 B_{ht} very many of the messages with simio lar indicator groups, which come to us from the field stations, are not genuine messages in depth at all, but are messages with the asme text which were eno ciphered twice in succession, since in the first encipterment a misteke wes made in the setting of the mechine. For this reason the real adaresses s could not deciphor the message, sent a query back, and then the message tas sent again with the correct onciphermant。 Linguistically such messages can of course, not be solved. Often such nessages can be recognized by their external sppearance on account of a large number of doublets (vertical dis graphs) in the wo cipher texts, by the appearance of quite definite intervals between the cipher texts, with similar or alnost similar length, fith similar
TOPSECRET

TOPSECRET

tactical times, while the intercept time usually is one or several hours apart. of'ten, however, it is not possible to decide in advence whether these are nessages in depth or not, and therefore, a ariterion has been sought which could give us a clue as to whether a pair of messages is in depth or not. In doing that, es already explained above, the fact has been employed that the intervals between the cipher letters are exactly the same to each other as the intervals of the correspondine clear text letters-oonly with opposite signs.

From solved M-209 messages from Africa, out of 10,000 letters the 300 most frequent clear text trigraphs were counted (taking into account the separetor letter " Z^{n}) and the clear text intervals of these trigraphs to each other were determined. The differances found correspond to the negative cipher intervals in messages in depth. The triple number (Zahlentripel) which arose was weighted with values built up simply from the product of the frequencies of their occurrences, since the probability that two definite clear text trigraphs will a ppear over each othar is equal to the product of the frequency of the percentage of their occurreace.

From these differences a table was prepared which findicates for us the corresponding weight for every possible Zahlentripel. One now finds each interval tiple which appears in the two cipher messages, in the upper as well as in the lower message, and adds up the weights which apply to them. The sum is then multipled by 100 and diviced by twice the number of positions being investigated. It is multiplled by 100 in order to get a relationship to 100 positions, and divided by twice the sum of the investigsted positions since we have looked up each position twicemonce in the upper and once in the lower message. For this reason the different sign of the intervels for the clear and cipher text has no meaning. The final result then gives us a -130
TOPSEGRET

TOPSECRET

point of departure for telling whether the mescages being investigated ars in depth or not．Experience has show that values of 50,000 or more make depth prokable．Valuee under 40,000 speak against depth，and with numbers in beo合weon 40,000 and 50,000 one can count on efther possibility of course，in doing this，scattering（Sireuungen）and coincidenees mat be taien into account．These things can make a consicerable distortion of the picture， especially tu short messagea．Mevertheless，up to now，we have，in generai， bean able to depend on the results，particularily in rather long messeges．

2．Other Criteria
Other criteria by which depth can be detemfned are more of an external nature．

4o tumber of Doublets．The doublet frequency of two Engiish clear texts when a word separator letter is ued is about s\％．In the cipher text of nessages in depth，however，doublets occur only when there also are doublets at these positions in the basic clear teats．A doublet frequency of betwean 6 and 8 percent in our cipher text，thereiore，signifies depth．This doublet criterion is not valid for messeges which are offeat by one in thoir clear text，since in this case doublets can oceux only when two similar cleer text letters follow each other，as for example，R ，SS，Tr，etco The expected value here is $2 \frac{1}{2}$ 綗。

bo Different Length and Different Encivherment mimes．

With the same length ano the same encipherment time there is always the suspicion that we axe deniing with tha sme text，in both messages and that it Was only sent one time wrong and one time correctly．Here we obtain，by means of our trigraph difierences，a starting point for deptio．

D．Difiticulties in the Solution of 期saeses in Depth．
After all that I have aatd and abown to you up to now you could get the
TOPSECRET

TOPSECRET

impression that the solution of machine messages in depth was a quite simple affair. But I have purposely chosen simple examples, which, furthermore, are all based upon genuine solutions of cases in which the individual methods lent themselves well to description. In conclusion I should like to shom you another pair of messages of recent date which will demonstrate to you what difficulties one often has to overcome in solution.

There was the case of a pair of nossages dated 15 Decembar 1944 which was sent to us on 16 December 1944 by teletype from roma ' in Italy. The length of the two messages was different, likewise the time of encipherments The number of doublets was favourable. There was even a three parallel pasition, and the trigraph differences gave a calculation of 51,000 on 170 letterso All criteria, therefore, pointed towards depth。 (See figure 11).

Hithin a very short time after preparing the strips, there vere two unmistakable break-ins, (See red underline in figure 11) but there were not yet enough letters avialable in order to reconstruct the internel setting of the machine. fie worked a whole day dragging through the message, without any success, frequent words from a 1 ist we had made ourselves. The short red position in the first line could not be bulit further and could, undes cep.tain conditions, be an accident. A digraphic frequency at the beginning was also unsuccessful. After the first break-in position there should come a proper name. It was, therefore, not suitable for a digraphic frequency, The second break-in was right at the end. A digraphic frequency from in front of it leading backwards also led to nothing, although we had at ous disposel as an aid a dictionary which was arranged alphabetically backwards. So, there was nothing more to do than to seep on dragging through new words, and at last we succeeded in breaking in with the word FIELD. With that the other

TOPSECRET

red pleces elso fell epart inmediately and now the internal sotting of the machine could be reconstructed with relstive eases

After that the parts of the message mhich, up to then, had not been solved were easily reac. one win admit further alao that a solution, with the aid of our strips, by using proper nemes and infrequent words vould hardly heve been possible.

Whth this measage the complications which the Anericans attempted can be recognized. Stereotyped beginnings are, of carse, forbidden, and likemise the encipherment of nuils by "X or "gin at the and of the messages They even have the messages begin in the midile of a sentence and then give the real begiming of the message somewhere in the midale. the beginning is
 ample, by a isve-fold repetition of one letter. We have even had cases Where at the beginaing of a messege oniy a part of a word appears; thus for example, "osegen, and the message then ends with the lettore "mesm. With that, naturaliy, you can have no success from making a digraphic freo quency at the beginning of the message. Another possibility, often used, is fining up messages at will at the beginning and at the snd. diter 5 to 10 nonsense letters the real message begins. Addresses are principally given only somewhere in the middle of the mesgege, inclose either in the abbreviations PAREN, CMA, PD, CLN, CR KIX

Fuxther one must take acceunt of many sbbreviations, in the invention of which the Americans are great and completely unmethodical, and which can in themselves make the reconstruction of an already unknown text very difficulto After that there is always a sometimes greater, sometinss maller percentage of gaxbles. But the nost unpleasent thing 3.3 that now often even. the numbers-ocur main source of entryo-are not written out anymore but are -16

TOPSECRET

sent as doubled letters: 1 is aa; 2 is bb; 3 is ce;.....pf is jj. And then when, as in this message, you edd many personal names and infrequent words, the solution can often be very difficult. Then you have to have ruch patience, experience, and, added to that, a litile bit of "fingertip feeling" in order to come to the desired success.

TOPSECRET

RECIPROCAL ALPMADET

Figure 3.

TOPSECRET

MESSACES IN PHASE.
BRRAK-IN I.

14Sc. 2 MSG. 2

359. KSG.2

- Ind

Figure 2。

TOPSECRET

HESSAGES IN PHSSE
EKEAROTM II.

Plevie 20

TOP SEGRET

TOPSECRET

STKIP MRITXNG
EXPLANATTOR

Figure $\& 0$

TOPSECRET

TOPSECRET

STRIP WRITING

EXANPIE I。

2	A	I	c	1	E		a		I		K	L	管	d	0	P	Q	K
z	1.	B	c	D	\％	1	G	\％	1	J	I	1.	2	N	0	p	Q	R
2	A	B	c	D	E	F	9	H	I		K	L	\％	N	0	P	，	R
I	J	15	む	${ }^{3}$	N	0	p	Q	R	5	T	5	7	\％	\bar{X}	T	2	A
\％	寿	0	\％	Q	R	S	\％	0	V	裏	z	Y	z	A	B	c	D	g
A	B	C	D	E	F	G	\％	1	J	\％	1.	道	埌	0	P	Q	\％	5
2	A	8	C	D	E	F	G	H	I	J	\％	L	M	第	0	p	Q	R
新	W	0	p	Q	E	S	I	V	v	䍂	X	X	Z	A	8	C	D	g
z	A	B	c	D	矿	F	G	${ }^{8}$	I	J	K	Σ	䍖	\％	0	2	Q	R
E	F	G	［1	I	J	K	1	M	\％	0	1	Q	R	S	T	0	V	\％
F	G	8	I	I	\％	1.	近	11	0	P	Q	3	S	T	J	V	VI	I
7	T	\bar{Y}	2	A	3	c	D	E	F	0	8	I	J	K	L	旡	\％	0
Q	R	S	T	13	V	誛	X	\boldsymbol{Y}	2	A	8	C	D	\％	${ }_{5}$	0	边	I
8	C	D	E	\％	a	H	I	J	K	L	䮖	${ }^{3}$	0	P	Q	R	S	T
c	D	E	\％	6	\mathbb{X}	1	J	晨	1	$1{ }^{3}$	V	0	P	Q	R	S	T	11
s	0	V	\％	\％	I	2	A	B	C	D	E	F	c	H	I	＋	\pm	\underline{L}
\mathbb{K}	L	犋	${ }_{5}$	0	p	Q	R	S	T	ป	V	T	X	1	2	A	B	c
0	p	Q	R	S	罗	v	V	＊	z	I	2	A	B	c	D	E	F	c

$$
\text { Figure } 50
$$

STRTH MRITING

EXEMPLS II．

TOPSECRET

DIT:RAPH - FREQUEMCIES.

Figuxe 7.

TOPSEGRET

TOPSECRET

CFESEP OF 1

Figure Eo

TOPSECRET

2 維go of 25.11 .44 makroi mqum 2958 kHz

Pigare 20

TOPSEGRET

TOP SECRET

THTCRAH-DIYFYRENCES
2 緮G。of 26.10 c 4
fiacg nifus
235 gkHz

Tigure 10.

TOP SECRET

MESSACE IN PHASE.
SOLTE: CJ

> 2 MSG of 15.12 .44
> cefbt tikiyu
> 4758 kHz

AC.	PIVES	EVEN.	C0. 50	T. 59.	ELE.C	V. IS	
Thsub	xeyvi	dxata	gfarn	zzfan	ca0yp	dsahn	ohlcop
ritap	kwobk	nfwyik	ragen	dvyfy	cugxz	vgecf	ckygz
. 1.	OST.	UVIJ	TID.	D. 0 OV	ERCAS	I.AN	WIITTM

(D)

G. ${ }^{\text {P }}$	I	A100. ${ }^{\text {W }}$	EAM	R,AT	c.	Bl. ${ }^{\text {a }}$ S	JITAB
kryhq	pofqz	nsw\%w	uptby	ruvsts	mgkmk	wlvym	psvtz
opfln	Plepin	frabxk	lat11	2ham,	atphu	xdlep	2rfikr
ED.VI	ST13T2.	TTO. 5	V.TAR	ENTAI	SE.SE	CTOR.	Јปป35

		CUB.	A.	U. 5	10.01	(1)	2\%.p
119yea	pyeinv	brnar	\%8qur	tehuh	lays	yhyln	WVmrg
urgex	cidte	osckr	bespl	1rax 1	ubasy	ebnin	Q1s!
SITR	${ }^{-1}$	MBER	Sy\%				

ThNE.	TO
lagsz	00x×x
xbpik	i ym mcm
. 2 ERO	. BICli

TOP SEC ${ }^{-}$ET

I ISP SECDE

Anlage 2^{a}

TOP SECRET
II) TOP SECRFT

Radgrossen

$\begin{array}{ll}17 & 10 \\ 19 & 7 \\ 21 & 4 \\ 23 & 3 \\ 25 & 2 \\ 26 & 1\end{array}$

\rightarrow VERBOTENE SPRÜNGE 19:RAD.
SPRÜNGE: 17:RAD

Beispiel Korrekt

TOP SECRET

CORRECTIO TO Page II O. ANLAGE 2-A

BLOCK N-13 OUGHT TO BE.

AND AS SUCH WOULD NOT HAVE aNY WHEEL CONSTANT FOR THIS VALUE. ERROR ON THE PART OF THE ORIGINATOR.

1) Als. Onnsilloj D. Q.12.44 fir Cl xioa fsc ūr

$\frac{i / f d .}{1 / 4 r .}$	Satricu		Freonieng Frof№r	rel in	absol.	
	1. 8. 44	the herd igh ye	4020	16		
	10.8 .44	gg abc def k a	4160	1 l	16	
	15.8.44	xx mxb gfod va	$3 \cdot 835$	1 b	16	23.10 .44
	21.8.44	$\bar{u} \bar{u}$ hej nol ù	4285	Kdr. 7	16	30.8.44
	28.8.44	nn cfgjec bw	3422	16	16	5.9 .44
	31.8 .44	ror gelo ojn or	3010	16	16	4.9.44
	3. 9. 44	cc fri gpmce	3295	16	16	17.10,44
	3. 9.44	bb axm for aū	3710	16	16	6.9.44
	8. 9.44	- dt		Medr. 7	kdr. 7	10,10,44
	9. 9. 44	jj acfefo sb	3240	16	16	
	9. 9.44	cc seq sma हy	3590	16	16	9.10 .44
	12.9.44	ग\% cfj cgif uL	3240	16	16	
	14.9.44	mm fubl ign mm	3295	16	16	
	14.9:44	dd gci zsg zd	3665	16	16	17,11,44
	15.9.44	bue rit qai lr	2330	Kedr. 5; 16	Medr. 5	11.10.44
	15.9.44	ce $\quad \circ 口$ inde by		$k d r .5$	hdr. 5	
	16.9.44	$b b f^{\prime} c d c \varepsilon f t$		Yedr. 5	1 b	9. 10.44
	16.9.44	6b imb run $x z$	2285	16	1 b	2. 10. 44
	16.9.44	cc eat dct gt	3280	16	1 b	30. 2.44
	19.9.44	ct		Sodr. 5	rodr. 5	
	21.9.44	mm dieg lge 1 mm	2390	160	16	7. 10.44
	24.9.44	an x En saows	3055	1.6	16	5. 10.44
	25. 9.44	If dis mop xr		Md. 5	Modr. 5	Midery': ${ }^{\text {a }}$ 8.10.94
	25. 9, 44	dd ajr fiem ys		Mede. 5	Kodr. 5	"115.10.94
	26. 9. 44	CC m\&c ing al		Yode. 5	Ytodr. 5	" "6.10.44
	27.9.44	htu wyj jeq Lh		16	16	14.10.44
	29.9.44	ad cole aff vic	2896	16	16	30,/v. 44
	3. 10. 44	mm jpon pock po.		Yodr. 5	Modr. 5	Milafie. 4. 2.10 .44
	4. 10. 44	a dla dla a/s.		Ydedr. 5	Tolor. 5	"18.8.10.44
	6. 10.44	of dra gon $x f$	2255	Molr. 5	Kolr. 5	$n 1150.10 .44$
	10.10.44	aa das lıb wo		Ted. 5	Modr. 5	") 13.14.10.4.4r
	16. 10.44	dd yza iso dd	2958	16	16	2. 11.44
	30. 10, 44	bblega djj po	- 22251	16	16	16.11.44
	14.10.44		4155		juce	
	15.10.44	$z b$	4155	Kout	tove	
	.					

23.Rad - + - - +

$\left.\operatorname{An}_{1} \mathrm{n}\right]=3$

TOP SECRET

ABCDEFGHI JKLMNOPQRSTEVWXYZ

 $8 \quad 23455678910111213141516171819202122232425261$ B C $345667891011121314151617181920212223242526120 c$

 $67891011121314151617181920212223242526123 \quad 3 \quad 5 \quad F$ 7891011121314151617181920212223242526122304566

 $\begin{array}{llllllllllllll}11 & 12 & 13 & 14 & 15 & 16 & 718 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\ 26 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & K\end{array}$
 131415161718192021222324252612234506789101112 M $14151617181920212223242526122345 \% 678910191213 N$ 1516171819202122232425261234556789101112 B 140 1617181920212223242526123456789101112131415
 $1819202122232425261234451678910111213141516,17 R$

 $242526123455678910111213141516171819202122231 \times$ 2526123456789101112131415101718192021222824 Y

Sprüngtabelle
 (für AM 1)

Anlage 4 TOP SECRET

1 SIGN

$$
\begin{aligned}
& 1 \\
& \begin{array}{lllllllllllllllllll}
\therefore & : & A & B & D & E & F & J & K & \ddots & S & U & W & X & Y & Z & 8 & t \\
\hdashline & : & C & G & H & I & L & M & N & O & P & R & T & V & 3 & 4 & 9 &
\end{array} \\
& 2
\end{aligned}
$$

2. SIGN

$t=$ Upper Case (seme as typewnter ahift key)

- $8=$ Lower Case (skifting back after machine has been in upper case)

9 = Space
These three symbols are usually used twice or mose consecutivel.
3, 4, / are not used.

Upper case symbols:
Numbers are represented by the rirst row at the typewriter keyboard in upper case, i.e.,

$$
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
Q & W & \mathbb{R} & \mathrm{R} & \mathrm{~T} & \mathbf{X} & \mathbf{U} & 1 & 0 & 8
\end{array}
$$

Opper case $M=$ period, or dit.
Upper case $\mathbb{A}=$ dash
Tpper case $\mathbb{K}=$ open parentheses
Upper case $L=$ close parentheses
Upper case $V=$ some sort of spacer
Upper case $S=$ apostrophe
Upper case SS = quotes
Prequently a string of in's indicate an emor has been made, word will be reprinted.

Every time a number is given, i.e. $++W R T 889$, later in the message the nuzbers will be spelled out ZWO VIER FUEMF.

Abbreviations will also be spelled out phonetically latex in the message. If he gives call signs giv, later guspay wordpod THEODOR will appeax.

German Phonetic Alphabet:
ANTON
BERTA
CAESAR
DORA
EMII
FRIEDRICH
gustav
HEINRICH
IDA
JULTUS
kONRAD
LUDWIG
MARTHA
NORDPOL
OTTO
padla
QUELTJ
RICHARD
SIEGRRIED
THEODOR
ULLRICH
VIXTOR
WILAELM (WTLLI)
XANTHEPPE
YPERRN
EEPPRETM

